Wurzelgleichung (Übungsvideo)

Wurzelgleichungen werden mit Hilfe des Quadrierens gelöst. Folgende Punkte sind dabei zu beachten:

  • \( \mathbb{D} \) korrekt bestimmen
  • Vorsicht beim Quadrieren (Binomische Formeln)
  • Probe: Am Schluss auf Scheinlösungen überprüfen.

Da das Quadrieren keine Äquivalenzumformung ist, können sich Scheinlösungen ergeben, welche mit Hilfe der Probe in der Ursprungsgleichung getestet werden müssen.

In der Kategorie Videos sind weitere Übungsvideos zu diversen Themen zu finden.

Aufgabe aus dem Video

➀ \( x + \sqrt{x+2} = 0 \quad \) Lösung

\( \quad \mathbb{D} = \{ x \in \mathbb{R} \,|\, x \ge -2 \} \qquad \mathbb{L} = \{-1\} \)
2 ist eine Scheinlösung

Wurzelgleichung: zweimaliges Quadrieren (Übungsvideo)


Das Übungsvideo zeigt die Auflösung einer etwas komplizierteren Wurzelgleichung:
\[ \mathbb{G} = \mathbb{R} : \quad \sqrt{x-15} \, – \sqrt{x+9} + \sqrt{x} = 0 \]
Hierbei muss zweimal quadriert werden, um alle Wurzelausdrücke aufzulösen und zur Lösungsmenge zu gelangen.

Dies ist das erste Übungsvideo, welches mit Hilfe der OneNote App erstellt wurde. Weitere Versuche folgen hoffentlich bald um diese Idee oder Umsetzung von #eDidaktik etwas auszuloten und die Möglichkeiten, die diese Art von Unterstützung bietet, besser kennenzulernen.

Aufgaben aus dem Video

➀ \( \sqrt{x-4} + \sqrt{x+1} = 5 \qquad \) Lösung


\( \mathbb{D} = \{ x \in \mathbb{R} \,|\, x \ge 4 \} \qquad \mathbb{L} = \{ 8 \} \)

 

➁ \( \sqrt{5-x} \, – 1 = \sqrt{x+8} \qquad \) Lösung


\( \mathbb{D} = \{ x \in \mathbb{R} \,|\, -8 \le x \le 5 \} \qquad \mathbb{L} = \{ -4 \} \)